English

If C O S E C X − Cot X = 1 2 , 0 < X < π 2 , - Mathematics

Advertisements
Advertisements

Question

If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

Options

  • \[\frac{5}{3}\]

     

  • \[\frac{3}{5}\]

     

  • \[- \frac{3}{5}\]

     

  • \[- \frac{5}{3}\]

     

MCQ

Solution

\[\frac{3}{5}\]

We have: 

\[\text{ cosec }x - \cot x = \frac{1}{2} \left( 1 \right)\]

\[ \Rightarrow \frac{1}{\text{ cosec }x - \cot x} = 2\]

\[ \Rightarrow \frac{{\text{ cosec }}^2 x - \cot^2 x}{\text{ cosec }x - \cot x} = 2\]

\[ \Rightarrow \frac{\left(\text{ cosec }x + \cot x \right)\left( \text{ cosec }x - \cot x \right)}{\left(\text{ cosec }x - \cot x \right)} = 2\]

\[ \therefore\text{ cosec }x +\cot x = 2 \left( 2 \right)\]

Adding ( 1 ) and ( 2 ): 

\[2\text{ cosec} x = \frac{1}{2} + 2\]

\[ \Rightarrow 2 \text{ cosec} x = \frac{5}{2}\]

\[ \Rightarrow\text{ cosec} x = \frac{5}{4}\]

\[ \Rightarrow \frac{1}{\sin x}=\frac{5}{4}\]

\[ \Rightarrow \sin x=\frac{4}{5}\]
\[\text{ Now, }0 < \theta < \frac{\pi}{2}\]
\[ \therefore \cos\theta = \sqrt{1 - \sin^2 \theta}\]
\[ = \sqrt{1 - \left( \frac{4}{5} \right)^2}\]
\[ = \frac{3}{5}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.5 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.5 | Q 12 | Page 42

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the general solution of cosec x = –2


Find the general solution of the equation  sin x + sin 3x + sin 5x = 0


If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


sin6 A + cos6 A + 3 sin2 A cos2 A =


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


If tan θ + sec θ =ex, then cos θ equals


Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\sin x = \tan x\]

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
3tanx + cot x = 5 cosec x


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 


If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

cos 2x = 1 − 3 sin x


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


The minimum value of 3cosx + 4sinx + 8 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×