Advertisements
Advertisements
Question
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
Options
- \[\frac{5}{3}\]
- \[\frac{3}{5}\]
- \[- \frac{3}{5}\]
- \[- \frac{5}{3}\]
Solution
We have:
\[\text{ cosec }x - \cot x = \frac{1}{2} \left( 1 \right)\]
\[ \Rightarrow \frac{1}{\text{ cosec }x - \cot x} = 2\]
\[ \Rightarrow \frac{{\text{ cosec }}^2 x - \cot^2 x}{\text{ cosec }x - \cot x} = 2\]
\[ \Rightarrow \frac{\left(\text{ cosec }x + \cot x \right)\left( \text{ cosec }x - \cot x \right)}{\left(\text{ cosec }x - \cot x \right)} = 2\]
\[ \therefore\text{ cosec }x +\cot x = 2 \left( 2 \right)\]
Adding ( 1 ) and ( 2 ):
\[2\text{ cosec} x = \frac{1}{2} + 2\]
\[ \Rightarrow 2 \text{ cosec} x = \frac{5}{2}\]
\[ \Rightarrow\text{ cosec} x = \frac{5}{4}\]
\[ \Rightarrow \frac{1}{\sin x}=\frac{5}{4}\]
\[ \Rightarrow \sin x=\frac{4}{5}\]
\[\text{ Now, }0 < \theta < \frac{\pi}{2}\]
\[ \therefore \cos\theta = \sqrt{1 - \sin^2 \theta}\]
\[ = \sqrt{1 - \left( \frac{4}{5} \right)^2}\]
\[ = \frac{3}{5}\]
APPEARS IN
RELATED QUESTIONS
Find the general solution of cosec x = –2
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
Prove that
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
In a ∆ABC, prove that:
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
sin6 A + cos6 A + 3 sin2 A cos2 A =
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
If tan θ + sec θ =ex, then cos θ equals
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
3tanx + cot x = 5 cosec x
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
The minimum value of 3cosx + 4sinx + 8 is ______.