Advertisements
Advertisements
Question
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
Options
AP
GP
HP
none of these
Solution
AP
Given:
\[\tan px - \tan qx = 0\]
\[\Rightarrow \tan px = \tan qx\]
\[ \Rightarrow \frac{\sin px}{\cos px} = \frac{\sin qx}{\cos qx}\]
\[ \Rightarrow \sin px \cos qx = \sin qx \cos px\]
\[ \Rightarrow \frac{1}{2}\left[ \sin\left( \frac{p + q}{2} \right)x + \sin\left( \frac{p - q}{2} \right)x \right] = \frac{1}{2}\left[ \sin\left( \frac{q + p}{2} \right)x + \sin\left( \frac{q - p}{2} \right)x \right]\]
Now,
\[\sin A \cos B = \frac{1}{2}\left[ \sin\left( \frac{A + B}{2} \right) + \sin\left( \frac{A - B}{2} \right) \right]\]
\[\Rightarrow \sin \left( \frac{p - q}{2} \right)x = \sin \left( \frac{q - p}{2} \right)x\]
\[ \Rightarrow \sin \left( \frac{p - q}{2} \right)x = - \sin \left( \frac{p - q}{2} \right)x\]
\[ \Rightarrow 2 \sin \left( \frac{p - q}{2} \right)x = 0\]
\[ \Rightarrow \sin \left( \frac{p - q}{2} \right)x = 0\]
\[\Rightarrow \left( \frac{p - q}{2} \right)x = n\pi, n \in Z\]
\[ \Rightarrow x = \frac{2n\pi}{(p - q)}, n \in Z\]
Now, on putting the value of
n, we get: \[n = 1, x = \frac{2\pi}{(p - q)}\]= a1
And so on.
Also,
\[d = a_2 - a_1 = \frac{4\pi}{(p - q)} - \frac{2\pi}{(p - q)} = \frac{2\pi}{(p - q)}\]
\[d = a_3 - a_2 = \frac{6\pi}{(p - q)} - \frac{4\pi}{(p - q)} = \frac{2\pi}{(p - q)}\]
\[d = a_4 - a_3 = \frac{8\pi}{(p - q)} - \frac{6\pi}{( p - q)} = \frac{2\pi}{(p - q)}\]
And so on.
Thus, x forms a series in AP.
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution of cosec x = –2
Find the general solution of the equation cos 4 x = cos 2 x
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
Prove that:
Prove that
In a ∆ABC, prove that:
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
3tanx + cot x = 5 cosec x
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
Write the solution set of the equation
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
The smallest positive angle which satisfies the equation
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
The minimum value of 3cosx + 4sinx + 8 is ______.
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.