English

If Tan P X − Tan Q X = 0 , Then the Values of θ Form a Series in - Mathematics

Advertisements
Advertisements

Question

If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 

Options

  • AP

  • GP

  • HP

  •  none of these

MCQ
Sum

Solution

AP
Given:
\[\tan px - \tan qx = 0\]
\[\Rightarrow \tan px = \tan qx\]
\[ \Rightarrow \frac{\sin px}{\cos px} = \frac{\sin qx}{\cos qx}\]
\[ \Rightarrow \sin px \cos qx = \sin qx \cos px\]
\[ \Rightarrow \frac{1}{2}\left[ \sin\left( \frac{p + q}{2} \right)x + \sin\left( \frac{p - q}{2} \right)x \right] = \frac{1}{2}\left[ \sin\left( \frac{q + p}{2} \right)x + \sin\left( \frac{q - p}{2} \right)x \right]\]
Now,
\[\sin A \cos B = \frac{1}{2}\left[ \sin\left( \frac{A + B}{2} \right) + \sin\left( \frac{A - B}{2} \right) \right]\]
\[\Rightarrow \sin \left( \frac{p - q}{2} \right)x = \sin \left( \frac{q - p}{2} \right)x\]
\[ \Rightarrow \sin \left( \frac{p - q}{2} \right)x = - \sin \left( \frac{p - q}{2} \right)x\]
\[ \Rightarrow 2 \sin \left( \frac{p - q}{2} \right)x = 0\]
\[ \Rightarrow \sin \left( \frac{p - q}{2} \right)x = 0\]
\[\Rightarrow \left( \frac{p - q}{2} \right)x = n\pi, n \in Z\]
\[ \Rightarrow x = \frac{2n\pi}{(p - q)}, n \in Z\]
Now, on putting the value of 
n, we get: \[n = 1, x = \frac{2\pi}{(p - q)}\]= a1

\[n = 2, x = \frac{4\pi}{(p - q)}\] = a2
\[n = 3, x = \frac{6\pi}{(p - q)}\] = a3
\[n = 4, x = \frac{8\pi}{(p - q)}\] = a4

And so on.
Also,
\[d = a_2 - a_1 = \frac{4\pi}{(p - q)} - \frac{2\pi}{(p - q)} = \frac{2\pi}{(p - q)}\]
\[d = a_3 - a_2 = \frac{6\pi}{(p - q)} - \frac{4\pi}{(p - q)} = \frac{2\pi}{(p - q)}\]
\[d = a_4 - a_3 = \frac{8\pi}{(p - q)} - \frac{6\pi}{( p - q)} = \frac{2\pi}{(p - q)}\]
And so on.
Thus, x forms a series in AP.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.3 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.3 | Q 3 | Page 27

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the general solution of cosec x = –2


Find the general solution of the equation cos 4 x = cos 2 x


If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\tan px = \cot qx\]

 


Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3 = 0\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
3tanx + cot x = 5 cosec x


Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


The minimum value of 3cosx + 4sinx + 8 is ______.


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×