English

Solve the Following Equation: Sin X − 3 Sin 2 X + Sin 3 X = Cos X − 3 Cos 2 X + Cos 3 X - Mathematics

Advertisements
Advertisements

Question

Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]

Sum

Solution

\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
\[ \Rightarrow 2\sin2x\cos x - 3\sin2x = 2\cos2x\cos x - 3\cos2x\]
\[ \Rightarrow \sin2x\left( 2\cos x - 3 \right) = \cos2x\left( 2\cos x - 3 \right)\]
\[ \Rightarrow \left( \sin2x - \cos2x \right)\left( 2\cos x - 3 \right) = 0\]
\[\Rightarrow \sin2x - \cos2x = 0 or 2\cos x - 3 = 0\]
\[ \Rightarrow \sin2x = \cos2x or \cos x = \frac{3}{2}\]
\[ \Rightarrow \tan2x = 1 or \cos x = \frac{3}{2}\]
But,
\[\cos x = \frac{3}{2}\] is not possible.

\[\left( - 1 \leq \cos x \leq 1 \right)\]

\[\therefore \tan2x = 1 = \tan\frac{\pi}{4}\]

\[ \Rightarrow 2x = n\pi + \frac{\pi}{4}, n \in Z\]

\[ \Rightarrow x = \frac{n\pi}{2} + \frac{\pi}{8}, n \in Z\]

 
shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.1 [Page 22]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.1 | Q 7.5 | Page 22

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the general solution of the equation cos 4 x = cos 2 x


Find the general solution of the equation cos 3x + cos x – cos 2x = 0


If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


If tan θ + sec θ =ex, then cos θ equals


If sec x + tan x = k, cos x =


Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×