Advertisements
Advertisements
Question
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
Options
- \[\cot\frac{x}{2}\]
- \[\tan\frac{x}{2}\]
- \[\cot\frac{x}{2} + \tan\frac{x}{2}\]
- \[\cot\frac{x}{2} - \tan\frac{x}{2}\]
Solution
We have:
\[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}} \]
\[ \Rightarrow \frac{y + 1}{1 - y} = \sqrt{\frac{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} + 2\sin\frac{x}{2}\cos\frac{x}{2}}{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} - 2\sin\frac{x}{2}\cos\frac{x}{2}}}\]
\[ \Rightarrow \frac{y + 1}{1 - y} = \sqrt{\frac{\left( cos\frac{x}{2} + \sin\frac{x}{2} \right)^2}{\left( cos\frac{x}{2} - \sin\frac{x}{2} \right)^2}}\]
\[ \Rightarrow \frac{y + 1}{1 - y} = \frac{\left( cos\frac{x}{2} + \sin\frac{x}{2} \right)}{\left( cos\frac{x}{2} - \sin\frac{x}{2} \right)} \left[ \because 0 < x < \frac{\pi}{2} \Rightarrow 0 < \frac{x}{2} < \frac{\pi}{4}, 0\text{ to }\frac{\pi}{4} \cos x\text{ is greater than }\sin x \right]\]
\[ \Rightarrow \frac{y + 1}{1 - y} = \frac{\frac{cos\frac{x}{2}}{cos\frac{x}{2}} + \frac{\sin\frac{x}{2}}{cos\frac{x}{2}}}{\frac{cos\frac{x}{2}}{cos\frac{x}{2}} - \frac{\sin\frac{x}{2}}{cos\frac{x}{2}}} \]
\[ \Rightarrow \frac{1 + y}{1 - y} = \frac{1 + \tan\frac{x}{2}}{1 - \tan\frac{x}{2}} \]
Comparing both the sides:
\[y = \tan\frac{x}{2}\]
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
If \[\tan x = \frac{a}{b},\] show that
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
Prove that:
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the solution set of the equation
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
The smallest positive angle which satisfies the equation
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.