English

If Tan X = a B , Show that a Sin X − B Cos X a Sin X + B Cos X = a 2 − B 2 a 2 + B 2 - Mathematics

Advertisements
Advertisements

Question

If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

Solution

LHS: 
\[\frac{a\sin x - b\cos x}{a\sin x + b\cos x}\]
Dividing by \[b\cos x: \]
\[ = \frac{\frac{a\tan x}{b} - 1}{\frac{a\tan x}{b} + 1}\]
Substituting the value of \[\tan x\]
\[ = \frac{a^2 - b^2}{a^2 + b^2}\]
 = RHS
Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.1 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.1 | Q 20 | Page 18

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the general solution of cosec x = –2


Find the general solution for each of the following equations sec2 2x = 1– tan 2x


Find the general solution of the equation  sin x + sin 3x + sin 5x = 0


If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 


If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


If \[4 \sin^2 x = 1\], then the values of x are

 


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

cos 2x = 1 − 3 sin x


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the equation sin θ + sin 3θ + sin 5θ = 0


The minimum value of 3cosx + 4sinx + 8 is ______.


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×