Advertisements
Advertisements
Question
Find the general solution of the following equation:
Solution
We have:
\[\Rightarrow \tan mx = - \cot nx\]
\[ \Rightarrow \tan mx = \tan \left( \frac{\pi}{2} + nx \right)\]
\[ \Rightarrow mx = r\pi + \left( \frac{\pi}{2} + nx \right), r \in Z\]
\[ \Rightarrow (m - n) x = r\pi + \frac{\pi}{2}, r \in Z\]
\[ \Rightarrow x = \left( \frac{2r + 1}{m - n} \right)\frac{\pi}{2}, r \in Z\]
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution of the equation sin 2x + cos x = 0
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
The smallest value of x satisfying the equation
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
If \[\cot x - \tan x = \sec x\], then, x is equal to
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
The minimum value of 3cosx + 4sinx + 8 is ______.
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.