हिंदी

Find the General Solution of the Following Equation: Tan M X + Cot N X = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the general solution of the following equation:

tanmx+cotnx=0
योग

उत्तर

We have:

tanmx+cotnx=0

tanmx=cotnx

tanmx=tan(π2+nx)

mx=rπ+(π2+nx),rZ

(mn)x=rπ+π2,rZ

x=(2r+1mn)π2,rZ

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.1 | Q 2.08 | पृष्ठ २१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the general solution of the equation  sin x + sin 3x + sin 5x = 0


If cotx(1+sinx)=4m and cotx(1sinx)=4n, (m2+n2)2=mn


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


Prove that:

3sinπ6secπ34sin5π6cotπ4=1

 


Prove that:
cos(2π+x)cosec(2π+x)tan(π/2+x)sec(π/2+x)cosxcot(π+x)=1

 


Prove that

{1+cotxsec(π2+x)}{1+cotx+sec(π2+x)}=2cotx

 


In a ∆ABC, prove that:

cos(A+B2)=sinC2

 


In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Find x from the following equations:
xcot(π2+θ)+tan(π2+θ)sinθ+cosec(π2+θ)=0


If π2<x<3π2, then 1sinx1+sinx is equal to

 


If cosecxcotx=12,0<x<π2,

 

If x is an acute angle and tanx=17, then the value of cosec2xsec2xcosec2x+sec2x is


If x sin 45° cos2 60° = tan260cosec30sec45cot230, then x =

 

If sec x + tan x = k, cos x =


Find the general solution of the following equation:

tanx=13

Find the general solution of the following equation:

sin9x=sinx

Find the general solution of the following equation:

tan3x=cotx

Solve the following equation:

2sin2x+3cosx+1=0

Solve the following equation:

tan2x+(13)tanx3=0

Solve the following equation:

tanx+tan2x+tan3x=0

Write the set of values of a for which the equation

3sinxcosx=a has no solution.

If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

Write the number of points of intersection of the curves

2y=1 and y=cosx,0x2π.
 

Write the solution set of the equation 

(2cosx+1)(4cosx+5)=0 in the interval [0, 2π].

Write the number of values of x in [0, 2π] that satisfy the equation sinxcosx=14.


If cosx+3sinx=2, then x=

 


If tanpxtanqx=0, then the values of θ form a series in

 


If cotxtanx=secx, then, x is equal to

 


The solution of the equation cos2x+sinx+1=0 lies in the interval


If cosx=12 and 0 < x < 2\pi, then the solutions are


Find the principal solution and general solution of the following:
cot θ = 3


Solve the following equations:
cot θ + cosec θ = 3


Solve the following equations:
tanθ+tan(θ+π3)+tan(θ+2π3)=3


Choose the correct alternative:
cos6x+6cos4x+15cosx+10cos5x+5cs3x+10cosx is equal to


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.