Advertisements
Advertisements
प्रश्न
Solve the following equation:
उत्तर
\[ \Rightarrow \tan x (\tan x + 1) - \sqrt{3} (\tan x + 1) = 0\]
\[ \Rightarrow (\tan x - \sqrt{3}) (\tan x + 1) = 0\]
Now,
\[\tan x - \sqrt{3} = 0 \]
\[ \Rightarrow \tan x = \sqrt{3} \]
\[ \Rightarrow \tan x = \tan \frac{\pi}{3} \]
\[ \Rightarrow x = n\pi + \frac{\pi}{3}, n \in Z\]
And,
\[\tan x = - 1 \]
\[ \Rightarrow \tan x = \tan\left( - \frac{\pi}{4} \right) \]
\[ \Rightarrow x = m\pi - \frac{\pi}{4}, m \in Z\]
APPEARS IN
संबंधित प्रश्न
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
Prove that:
Prove that
Prove that
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Solve the following equation:
3tanx + cot x = 5 cosec x
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the number of points of intersection of the curves
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0