Advertisements
Advertisements
प्रश्न
Prove that
उत्तर
LHS = \[\frac{cosec \left( 90^\circ + x \right) + \cot \left( 450^\circ + x \right)}{cosec \left( 90^\circ - x \right) + \tan \left( 180^\circ - x \right)} + \frac{\tan \left( 180^\circ + x \right) + \sec \left( 180^\circ - x \right)}{\tan \left( 360^\circ + x \right) - \sec \left( - x \right)}\]
\[ = \frac{cosec\left( 90^\circ + x \right) + \cot\left( 450^\circ + x \right)}{cosec \left( 90^\circ - x \right) + \tan\left( 180^\circ - x \right)} + \frac{\tan \left( 180^\circ + x \right) + \sec \left( 180^\circ - x \right)}{\tan \left( 360^\circ + x \right) - \sec \left( - x \right)}\]
\[ = \frac{cosec\left( 90^\circ + x \right) + \cot \left( 90^\circ \times 5 + x \right)}{cosec\left( 90^\circ - x \right) + \tan \left( 90^\circ \times 2 - x \right)} + \frac{\tan \left( 90^\circ \times 2 + x \right) + \sec \left( 90^\circ \times 2 - x \right)}{\tan\left( 90^\circ \times 4 + x \right) - \sec\left( - x \right)}\]
\[ = \frac{\sec x + \cot \left( 90^\circ \times 5 + x \right)}{cosec\left( 90^\circ- x \right) + \tan \left( 90^\circ \times 2 - x \right)} + \frac{\tan \left( 90^\circ \times 2 + x \right) + \sec \left( 90^\circ \times 2 - x \right)}{\tan \left( 90^\circ \times 4 + x \right) - \sec \left( - x \right)}\]
\[ = \frac{\sec x - \tan x}{\sec x - \tan x} + \frac{\tan x - \sec x}{\tan x - \sec x}\]
\[ = 1 + 1\]
\[ = 2\]
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
If sec x + tan x = k, cos x =
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Write the solution set of the equation
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The smallest positive angle which satisfies the equation
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
General solution of \[\tan 5 x = \cot 2 x\] is
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the equation sin θ + sin 3θ + sin 5θ = 0
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0