हिंदी

Solve the Following Equation: Tan X + Tan 2 X = Tan 3 X - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]
योग

उत्तर

Given:

\[\tan x + \tan2x = \tan3x\]
Now, 
\[\tan x + \tan2x = \tan (x + 2x)\]
\[ \Rightarrow \tan x + \tan 2x = \frac{\tan x + \tan2x}{1 - \tan x \tan2x}\]
\[ \Rightarrow \tan x + \tan2x - \frac{\tan x + \tan2x}{1 - \tan x \tan2x} = 0\]
\[ \Rightarrow (\tan x + \tan2x) (1 - \tan x \tan2x) - (\tan x + \tan2x) = 0\]
\[ \Rightarrow (\tan x + \tan 2x) (1 - \tan x \tan2x - 1) = 0\]
\[ \Rightarrow (\tan x + \tan2x) ( - \tan x \tan2x) = 0\]
\[\Rightarrow \tan x + \tan 2x = 0\] or
\[\tan x \tan2x = 0\]

Now,

\[\tan x + \tan 2x = 0 \]
\[ \Rightarrow \tan x = - \tan 2x\]
\[ \Rightarrow \tan x = \tan - 2x\]
\[ \Rightarrow x = n\pi - 2x, n \in Z\]
\[ \Rightarrow 3x = n\pi \]
\[ \Rightarrow x = \frac{n\pi}{3}, n \in Z\]

And,

\[\tan x + \tan 2x = 0 \]
\[ \Rightarrow \tan x = - \tan 2x\]
\[ \Rightarrow \tan x = \tan - 2x\]
\[ \Rightarrow x = n\pi - 2x, n \in Z\]
\[ \Rightarrow 3x = n\pi \]
\[ \Rightarrow x = \frac{n\pi}{3}, n \in Z\]

∴ \[x = \frac{n\pi}{3}, n \in Z\] or

\[x = \frac{n\pi}{3}, n \in Z\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.1 | Q 5.2 | पृष्ठ २२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution of cosec x = –2


If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

cos 2x = 1 − 3 sin x


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×