हिंदी

If \[T_N = \Sin^N X + \Cos^N X\], Prove That \[2 T_6 - 3 T_4 + 1 = 0\] - Mathematics

Advertisements
Advertisements

प्रश्न

If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]

उत्तर

LHS:  \[2 T_6 - 3 T_4 + 1\]
\[2\left( \sin^6 x + \cos^6 x \right) - 3\left( \sin^4 x + \cos^4 x \right) + 1\]
\[2\left( \sin^2 x + \cos^2 x \right)\left( \sin^4 x + \cos^4 x - \sin^2 x \cos^2 x \right) - 3\left( \sin^4 x + \cos^4 x \right) + 1\]
\[2 . 1 . \left( \sin^4 x + \cos^4 x - \sin^2 x \cos^2 x \right) - 3\left( \sin^4 x + \cos^4 x \right) + 1\]
\[2 \sin^4 x + 2 \cos^4 x - 2 \sin^2 x \cos^2 x - 3 \sin^4 x - 3 \cos^4 x + 1\]
\[ - \left( \sin^4 x + \cos^4 x \right) - \sin^2 x \cos^2 x + 1\]
\[ - ( \sin^2 x + \cos^2 x )^2 + 1\]
\[ - 1 + 1\]
\[0\]
Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Trigonometric Functions - Exercise 5.1 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 5 Trigonometric Functions
Exercise 5.1 | Q 26.2 | पृष्ठ १९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the general solution of the equation  sin x + sin 3x + sin 5x = 0


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


sin6 A + cos6 A + 3 sin2 A cos2 A =


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


If sec x + tan x = k, cos x =


Find the general solution of the following equation:

\[\sin x = \tan x\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
3tanx + cot x = 5 cosec x


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


Write the general solutions of tan2 2x = 1.

 

Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×