Advertisements
Advertisements
प्रश्न
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
उत्तर
LHS: \[2 T_6 - 3 T_4 + 1\]
\[2\left( \sin^6 x + \cos^6 x \right) - 3\left( \sin^4 x + \cos^4 x \right) + 1\]
\[2\left( \sin^2 x + \cos^2 x \right)\left( \sin^4 x + \cos^4 x - \sin^2 x \cos^2 x \right) - 3\left( \sin^4 x + \cos^4 x \right) + 1\]
\[2 . 1 . \left( \sin^4 x + \cos^4 x - \sin^2 x \cos^2 x \right) - 3\left( \sin^4 x + \cos^4 x \right) + 1\]
\[2 \sin^4 x + 2 \cos^4 x - 2 \sin^2 x \cos^2 x - 3 \sin^4 x - 3 \cos^4 x + 1\]
\[ - \left( \sin^4 x + \cos^4 x \right) - \sin^2 x \cos^2 x + 1\]
\[ - ( \sin^2 x + \cos^2 x )^2 + 1\]
\[ - 1 + 1\]
\[0\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
In a ∆ABC, prove that:
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
Prove that:
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
sin6 A + cos6 A + 3 sin2 A cos2 A =
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
If sec x + tan x = k, cos x =
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
3tanx + cot x = 5 cosec x
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the general solutions of tan2 2x = 1.
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
Write the solution set of the equation
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to