Advertisements
Advertisements
प्रश्न
Write the general solutions of tan2 2x = 1.
उत्तर
Given:
\[\tan^2 2x = 1\]
\[ \Rightarrow \tan 2x = \tan \frac{\pi}{4}\]
\[ \Rightarrow 2x = n\pi + \frac{\pi}{4}\]
\[ \Rightarrow x = \frac{n\pi}{2} + \frac{\pi}{8}, n \in Z\]
Hence, the general solution of the equation is
\[\frac{n\pi}{2} + \frac{\pi}{8}, n \in Z .\]
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation sin 2x + cos x = 0
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[\tan x = \frac{a}{b},\] show that
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the set of values of a for which the equation
Write the number of points of intersection of the curves
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Solve the equation sin θ + sin 3θ + sin 5θ = 0