हिंदी

The General Solution of the Equation 7 Cos 2 X + 3 Sin 2 X = 4 is - Mathematics

Advertisements
Advertisements

प्रश्न

The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is

विकल्प

  • \[x = 2 n\pi \pm \frac{\pi}{6}, n \in Z\]

     

  • \[x = 2 n\pi \pm \frac{2\pi}{3}, n \in Z\]

     

  • \[x = n\pi \pm \frac{\pi}{3}, n \in Z\]
  • none of these

MCQ
योग

उत्तर

\[x = n\pi \pm \frac{\pi}{3}, n \in Z\]
Given:
\[7 \cos^2 x + 3 \sin^2 x = 4\]
\[ \Rightarrow 7 \cos^2 x + 3 (1 - \cos^2 x) = 4\]
\[ \Rightarrow 7 \cos^2 x + 3 - 3 \cos^2 x = 4\]
\[ \Rightarrow 4 \cos^2 x + 3 = 4\]
\[ \Rightarrow 4 (1 - \cos^2 x) = 3\]
\[ \Rightarrow 4 \sin^2 x = 3\]
\[ \Rightarrow \sin^2 x = \frac{3}{4}\]
\[ \Rightarrow \sin x = \frac{\sqrt{3}}{2}\]
\[ \Rightarrow \sin x = \sin \frac{\pi}{3}\]
\[ \Rightarrow x = n\pi \pm \frac{\pi}{3}, n \in Z\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric equations - Exercise 11.3 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 11 Trigonometric equations
Exercise 11.3 | Q 5 | पृष्ठ २७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

In a ∆ABC, prove that:
cos (A + B) + cos C = 0


Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


If tan θ + sec θ =ex, then cos θ equals


Which of the following is correct?


Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Solve the following equation:

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]

Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Solve the following equation:
3tanx + cot x = 5 cosec x


Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

If \[\cot x - \tan x = \sec x\], then, x is equal to

 


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×