हिंदी

If Tan θ + Sec θ =Ex, Then Cos θ Equals - Mathematics

Advertisements
Advertisements

प्रश्न

If tan θ + sec θ =ex, then cos θ equals

विकल्प

  • \[\frac{e^x + e^{- x}}{2}\]

     

  • \[\frac{2}{e^x + e^{- x}}\]

     

  • \[\frac{e^x - e^{- x}}{2}\]

     

  • \[\frac{e^x - e^{- x}}{e^x + e^{- x}}\]

     

MCQ

उत्तर

\[\frac{2}{e^x + e^{- x}}\]

We have:
\[ \tan \theta + \sec \theta = e^x \]

\[ \sec \theta + \tan \theta = e^x \left( 1 \right)\]

\[ \Rightarrow \frac{1}{sec\theta + tan\theta} = \frac{1}{e^x}\]

\[ \Rightarrow \frac{\sec^2 \theta - \tan^2 \theta}{\sec \theta + \tan \theta} = \frac{1}{e^x}\]

\[ \Rightarrow \frac{\left( \sec \theta + \tan \theta \right)\left( \sec \theta - \tan \theta \right)}{\left( \sec \theta + \tan \theta \right)} = \frac{1}{e^x}\]

\[ \therefore sec\theta-\tan\theta = \frac{1}{e^x} \left( 2 \right)\]

Adding ( 1 ) and ( 2 ): 

\[2\sec \theta = e^x + \frac{1}{e^x}\]

\[ \Rightarrow 2\sec \theta = \frac{\left( e^x \right)^2 + 1}{e^x}\]

\[ \Rightarrow \sec \theta = \frac{e^{2x} + 1}{2 e^x}\]

\[ \Rightarrow \sec \theta = \frac{1}{2} \times \frac{e^{2x} + 1}{e^x}\]

\[ \Rightarrow \sec \theta = \frac{1}{2}\times\left( e^x + e^{- x} \right)\]

\[ \Rightarrow \frac{1}{\cos \theta} = \frac{e^x + e^{- x}}{2}\]

\[ \Rightarrow \cos\theta = \frac{2}{e^x + e^{- x}}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Trigonometric Functions - Exercise 5.5 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 5 Trigonometric Functions
Exercise 5.5 | Q 22 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the principal and general solutions of the equation sec x = 2


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Find the general solution of the following equation:

\[\sin x = \tan x\]

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 


In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


General solution of \[\tan 5 x = \cot 2 x\] is


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Solve the equation sin θ + sin 3θ + sin 5θ = 0


The minimum value of 3cosx + 4sinx + 8 is ______.


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×