Advertisements
Advertisements
प्रश्न
Find the general solution of the following equation:
उत्तर
We have:
\[\tan px = \cot qx\]
\[\Rightarrow \tan px = \tan \left( \frac{\pi}{2} - qx \right)\]
\[ \Rightarrow px = n\pi + \left( \frac{\pi}{2} - qx \right), n \in Z\]
\[ \Rightarrow (p + q)x = n\pi + \frac{\pi}{2}, n \in Z\]
\[ \Rightarrow x = \left( \frac{2n + 1}{p + q} \right)\frac{\pi}{2}, n \in Z\]
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation cos 4 x = cos 2 x
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that:
Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]
Prove that
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Which of the following is incorrect?
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the solution set of the equation
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
Solve the equation sin θ + sin 3θ + sin 5θ = 0
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x