English

The minimum value of 3cosx + 4sinx + 8 is ______. - Mathematics

Advertisements
Advertisements

Question

The minimum value of 3cosx + 4sinx + 8 is ______.

Options

  • 5

  • 9

  • 7

  • 3

MCQ
Fill in the Blanks

Solution

The minimum value of 3cosx + 4sinx + 8 is 3.

Explanation:

The given expression is 3cosx + 4sinx + 8

Let y = 3cosx + 4sinx + 8

⇒ y – 8 = 3cosx + 4sinx

Minimum value of y – 8 = `sqrt((3)^2 + (4)^2`

⇒  y – 8 = `-sqrt(9 + 16)` = – 5

⇒ y = 8 – 5 = 3

So, the minimum value of the given expression is 3.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise [Page 56]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise | Q 41 | Page 56

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution of the equation cos 4 x = cos 2 x


Find the general solution of the equation sin 2x + cos x = 0


If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


If \[\cot x - \tan x = \sec x\], then, x is equal to

 


In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 


The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×