Advertisements
Advertisements
Question
If \[\cot x - \tan x = \sec x\], then, x is equal to
Options
- \[2 n\pi + \frac{3\pi}{2}, n \in Z\]
\[n\pi + \left( - 1 \right)^n \frac{\pi}{6}, n \in Z\]
- \[n\pi + \frac{\pi}{2}, n \in Z\]
none of these.
Solution
Given equation:
\[cot x - \tan x = sec x\]
\[ \Rightarrow \frac{\cos x}{\sin x} - \frac{\sin x}{\cos x} = \frac{1}{\cos x}\]
\[ \Rightarrow \frac{\cos^2 x - \sin^2 x}{\sin x \cos x} = \frac{1}{\cos x}\]
\[ \Rightarrow \cos^2 x - \sin^2 x = \sin x\]
\[ \Rightarrow (1 - \sin^2 x) - \sin^2 x = \sin x\]
\[ \Rightarrow 1 - 2 \sin^2 x = \sin x\]
\[ \Rightarrow 2 \sin^2 x + \sin x - 1 = 0\]
\[ \Rightarrow 2 \sin^2 x + 2 \sin x - \sin x - 1 = 0\]
\[ \Rightarrow 2 \sin x ( \sin x + 1) - 1 (\sin x + 1) = 0\]
\[ \Rightarrow (\sin x + 1) (2 \sin x - 1) = 0\]
APPEARS IN
RELATED QUESTIONS
Find the general solution of cosec x = –2
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that:
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that
Prove that
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
In a ∆ABC, prove that:
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
If sec x + tan x = k, cos x =
Which of the following is incorrect?
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
The smallest value of x satisfying the equation
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.