English

If Cot X − Tan X = Sec X , Then, X is Equal to - Mathematics

Advertisements
Advertisements

Question

If \[\cot x - \tan x = \sec x\], then, x is equal to

 

Options

  • \[2 n\pi + \frac{3\pi}{2}, n \in Z\]

     

  • \[n\pi + \left( - 1 \right)^n \frac{\pi}{6}, n \in Z\]

  • \[n\pi + \frac{\pi}{2}, n \in Z\]

     

  • none of these.

MCQ
Sum

Solution

\[n\pi + \frac{\pi}{2}, n \in Z\]
Given equation:
\[cot x - \tan x = sec x\]
\[ \Rightarrow \frac{\cos x}{\sin x} - \frac{\sin x}{\cos x} = \frac{1}{\cos x}\]
\[ \Rightarrow \frac{\cos^2 x - \sin^2 x}{\sin x \cos x} = \frac{1}{\cos x}\]
\[ \Rightarrow \cos^2 x - \sin^2 x = \sin x\]
\[ \Rightarrow (1 - \sin^2 x) - \sin^2 x = \sin x\]
\[ \Rightarrow 1 - 2 \sin^2 x = \sin x\]
\[ \Rightarrow 2 \sin^2 x + \sin x - 1 = 0\]
\[ \Rightarrow 2 \sin^2 x + 2 \sin x - \sin x - 1 = 0\]
\[ \Rightarrow 2 \sin x ( \sin x + 1) - 1 (\sin x + 1) = 0\]
\[ \Rightarrow (\sin x + 1) (2 \sin x - 1) = 0\]
\[\Rightarrow \sin x + 1 = 0\] or
\[2 \sin x - 1 = 0\]
\[\Rightarrow \sin x = - 1\] or
\[\sin x = \frac{1}{2}\]
Now, 
\[\sin x = - 1 \Rightarrow \sin x = \sin \frac{3\pi}{2} \Rightarrow x = m\pi + ( - 1 )^m \frac{3\pi}{2} , m \in Z\]
And,  
\[\sin x = \frac{1}{2} \Rightarrow \sin x = \sin \frac{\pi}{6} \Rightarrow x = n\pi + ( - 1 )^n \frac{\pi}{6} , n \in Z\]
∴ \[x = n\pi + ( - 1 )^n \frac{\pi}{6} , n \in Z\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.3 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.3 | Q 11 | Page 27

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the general solution of cosec x = –2


Find the general solution of the equation  sin x + sin 3x + sin 5x = 0


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If sec x + tan x = k, cos x =


Which of the following is incorrect?


The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Solve the following equation:

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×