English

If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ. - Mathematics

Advertisements
Advertisements

Question

If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.

Sum

Solution

2sin2θ = 3cosθ

We know that,

sin2θ = 1 – cos2θ

Given that,

2sin2θ = 3 cosθ

2 – 2cos2θ = 3cosθ

2cos2θ + 3cosθ – 2 = 0

(cosθ + 2)(2cosθ – 1) = 0

Therefore,

cosθ = `1/2 = cos  pi/3`

θ = `pi/3` or `2π  –  pi/3`

θ = `pi/3, (5pi)/3`

Therefore, 2(1 – cos2θ) = 3cosθ

⇒ 2 – 2cos2θ = 3cosθ

⇒ 2cos2θ + 3cosθ – 2 = 0

⇒ 2cos2θ + 4cosθ – cosθ – 2 = 0

⇒ 2cosθ(cosθ + 2) + 1(cosθ + 2) = 0

⇒ (2cosθ + 1)(cosθ + 2) = 0

Since, cosθ ∈ [–1, 1], for any value θ.

So, cosθ ≠ –2

Therefore,

2cosθ – 1 = 0

⇒ cosθ = `1/2`

= `pi/3` or `2π  –  pi/3`

θ = `π/3, (5pi)/3`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise [Page 54]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise | Q 18 | Page 54

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the general solution of the equation sin 2x + cos x = 0


If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


Which of the following is incorrect?


Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Solve the following equation:

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3 = 0\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:

`cosec  x = 1 + cot x`


If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×