English

If Cos X = K Has Exactly One Solution in [0, 2π], Then Write the Values(S) of K. - Mathematics

Advertisements
Advertisements

Question

If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 
Sum

Solution

Given: 
\[\cos x = k\]
If \[k = 0\], then

\[\cos x = 0\]

\[ \Rightarrow \cos x = \cos \frac{\pi}{2}\]

\[ \Rightarrow x = (2n + 1) \frac{\pi}{2}, n \in Z\]
Now,

\[x = \frac{3\pi}{2} , \frac{5\pi}{2}, \frac{7\pi}{2}, . . .\]  for 
n = 1, 2, 3, . . .
If k = 1, then

\[cos x = 1\]

\[ \Rightarrow \cos x = \cos 0\]

\[ \Rightarrow x = 2m\pi, m \in Z\]
Now, \[x = 2\pi, 4\pi, 6\pi, 8\pi, . . .\]

\[m = 1, 2, 3, 4, . . .\]
If \[k = - 1,\] then

\[\cos x = - 1\]

\[ \Rightarrow \cos x = \cos \pi\]

\[ \Rightarrow x = 2p\pi \pm \pi, p \in Z\]
Now,

\[x = 2p\pi + \pi, i . e . , x = 3\pi, 5\pi, 7\pi, . . .\] when
p = 1, 2, 3, . . .
And \[x = 2p\pi - \pi, i . e . , x = \pi, 3\pi, 5\pi, 7\pi, . . .\] when
p = 1, 2, 3, 4, . . .
Clearly, we can see that for \[x = \pi\]
\[\cos x = k\] has exactly one solution.
∴ k = - 1
shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.2 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.2 | Q 5 | Page 26

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If tan θ + sec θ =ex, then cos θ equals


The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

If \[4 \sin^2 x = 1\], then the values of x are

 


If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×