Advertisements
Advertisements
Question
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
Solution
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
\[ \Rightarrow 2^{\sin^2 x} + 2^{1 - \sin^2 x} = 2\sqrt{2}\]
\[ \Rightarrow 2^{\sin^2 x} + \frac{2}{2^{\sin^2 x}} = 2\sqrt{2}\]
\[\text{ Let }2^{\sin^2 x} = y\]
\[ \Rightarrow y + \frac{2}{y} = 2\sqrt{2}\]
\[ \Rightarrow y^2 + 2 = 2\sqrt{2}y\]
\[ \Rightarrow y^2 - 2\sqrt{2}y + 2 = 0\]
\[ \Rightarrow y^2 - \sqrt{2}y - \sqrt{2}y + 2 = 0\]
\[ \Rightarrow y\left( y - \sqrt{2} \right) - \sqrt{2}\left( y - \sqrt{2} \right) = 0\]
\[ \Rightarrow \left( y - \sqrt{2} \right)^2 = 0\]
\[ \Rightarrow \left( y - \sqrt{2} \right) = 0\]
\[ \Rightarrow y = \sqrt{2}\]
\[ \Rightarrow 2^{\sin^2 x} = 2^\frac{1}{2} \]
\[ \Rightarrow \sin^2 x = \frac{1}{2}\]
\[ \Rightarrow \sin^2 x = \sin^2 \frac{\pi}{4}\]
\[ \Rightarrow x = n\pi \pm \frac{\pi}{4}, n \in \mathbb{Z}\]
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation sec x = 2
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution of the equation cos 4 x = cos 2 x
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[\tan x = \frac{a}{b},\] show that
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that:
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
Prove that:
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
If tan θ + sec θ =ex, then cos θ equals
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Write the set of values of a for which the equation
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the number of points of intersection of the curves
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
If \[\cot x - \tan x = \sec x\], then, x is equal to
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.