English

Solve the Following Equation: 2 Cos 2 X − 5 Cos X + 2 = 0 - Mathematics

Advertisements
Advertisements

Question

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]
Sum

Solution

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

\[ \Rightarrow 2 \cos^2 x - 4 \cos x - \cos x + 2 = 0\]

\[ \Rightarrow 2 \cos x ( \cos x - 2) - 1 ( \cos x - 2) = 0\]

\[ \Rightarrow (\cos x - 2) ( 2 \cos\theta - 1) = 0\]

\[\Rightarrow ( \cos x - 2 ) = 0\] or
\[( 2 \cos x - 1) = 0\]
\[\cos x = 2\]  is not possible.

\[\therefore 2 \cos x - 1 = 0 \]

\[ \Rightarrow \cos x = \frac{1}{2} \]

\[ \Rightarrow \cos x = \cos \frac{\pi}{3} \]

\[ \Rightarrow x = 2n\pi \pm \frac{\pi}{3}, n \in Z\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.1 [Page 22]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.1 | Q 3.2 | Page 22

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation `tan x = sqrt3`


If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


Which of the following is incorrect?


The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is

 

The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Which of the following is correct?


Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×