Advertisements
Advertisements
प्रश्न
Solve the following equation:
उत्तर
\[2 \cos^2 x - 5 \cos x + 2 = 0\]
\[ \Rightarrow 2 \cos^2 x - 4 \cos x - \cos x + 2 = 0\]
\[ \Rightarrow 2 \cos x ( \cos x - 2) - 1 ( \cos x - 2) = 0\]
\[ \Rightarrow (\cos x - 2) ( 2 \cos\theta - 1) = 0\]
\[\therefore 2 \cos x - 1 = 0 \]
\[ \Rightarrow \cos x = \frac{1}{2} \]
\[ \Rightarrow \cos x = \cos \frac{\pi}{3} \]
\[ \Rightarrow x = 2n\pi \pm \frac{\pi}{3}, n \in Z\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the general solution of the equation sin 2x + cos x = 0
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
In a ∆ABC, prove that:
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If sec x + tan x = k, cos x =
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Which of the following is incorrect?
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the solution set of the equation
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2