मराठी

Solve the Following Equation: 2 Sin 2 X = 3 Cos X , 0 ≤ X ≤ 2 π - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]

बेरीज

उत्तर

\[2 \sin^2 x = 3\cos x\]
\[ \Rightarrow 2\left( 1 - \cos^2 x \right) = 3\cos x\]
\[ \Rightarrow 2 \cos^2 x + 3\cos x - 2 = 0\]
\[ \Rightarrow \left( 2\cos x - 1 \right)\left( \cos x + 2 \right) = 0\]
\[\Rightarrow \cos x = \frac{1}{2} \text{ or }\cos x = - 2\]
But,
\[\cos x = - 2\]  is not possible.

\[\left( - 1 \leq \cos x \leq 1 \right)\]
`therefore cosx=1/2=cos  pi/3`
`=>x=2npi+-pi/3,nin Z`
Putting n = 0 and n = 1, we get
\[x = \frac{\pi}{3}, \frac{5\pi}{3} \left( 0 \leq x \leq 2\pi \right)\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.1 | Q 7.2 | पृष्ठ २२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the general solution of the equation cos 4 x = cos 2 x


If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


If tan θ + sec θ =ex, then cos θ equals


If sec x + tan x = k, cos x =


Which of the following is correct?


Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Find the general solution of the following equation:

\[\tan px = \cot qx\]

 


Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\cos x + \cos 2x + \cos 3x = 0\]

Solve the following equation:

\[\tan x + \tan 2x = \tan 3x\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Solve the following equation:
3tanx + cot x = 5 cosec x


If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×