Advertisements
Advertisements
प्रश्न
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
पर्याय
θ, ϕ
r, θ
r, ϕ
r
उत्तर
θ, ϕ
We have:
x = r sin θ cos ϕ , y = r sin θ sin ϕ and z = r cos θ,
∴ x2 + y2 + z2
\[= \left( r \sin\theta \cos\phi \right)^2 + \left( r \sin\theta \sin\phi \right)^2 + \left( r \cos\theta \right)^2 \]
\[ = r^2 \sin^2 \theta \cos^2 \phi + r^2 \sin^2 \theta \sin^2 \phi + r^2 \cos^2 \theta \]
\[ = r^2 \sin^2 \theta \left( \cos^2 \phi + \sin^2 \phi \right) + r^2 \cos^2 \theta \]
\[ = r^2 \sin^2 \theta \times 1 + r^2 \cos^2 \theta\]
\[ = r^2 \sin^2 \theta + r^2 \cos^2 \theta\]
\[ = r^2 \left( \sin^2 \theta + \cos^2 \theta \right)\]
\[ = r^2 \times 1\]
\[ = r^2 \]
\[\text{ Thus, }x^2 + y^2 + z^2\text{ is independent of }\theta\text{ and }\phi .\]
APPEARS IN
संबंधित प्रश्न
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the general solutions of tan2 2x = 1.
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
If \[4 \sin^2 x = 1\], then the values of x are
If \[\cot x - \tan x = \sec x\], then, x is equal to
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to