मराठी

If 3 Tan ( X − 15 ∘ ) = Tan ( X + 15 ∘ ) 0 < X < 90 ∘ , Find θ. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.

बेरीज

उत्तर

Given: \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\]
\[\Rightarrow \frac{\tan\left( x + 15^\circ \right)}{\tan\left( x - 15^\circ \right)} = 3\]
Applying componendo and dividendo, we have
\[\frac{\tan\left( x + 15^\circ \right) + \tan\left( x - 15^\circ \right)}{\tan\left( x + 15^\circ \right) - \tan\left( x - 15^\circ \right)} = \frac{3 + 1}{3 - 1}\]
\[ \Rightarrow \frac{\frac{\sin\left( x + 15^\circ \right)}{\cos\left( x + 15^\circ \right)} + \frac{\sin\left( x - 15^\circ \right)}{\cos\left( x - 15^\circ \right)}}{\frac{\sin\left( x + 15^\circ \right)}{\cos\left( x + 15^\circ \right)} - \frac{\sin\left( x - 15^\circ \right)}{\cos\left( x - 15^\circ \right)}} = \frac{4}{2}\]
\[ \Rightarrow \frac{\sin\left( x + 15^\circ \right)\cos\left( x - 15^\circ \right) + \cos\left( x + 15^\circ \right)\sin\left( x - 15^\circ \right)}{\sin\left( x + 15^\circ \right)\cos\left( x - 15^\circ \right) - \cos\left( x + 15^\circ \right)\sin\left( x - 15^\circ \right)} = 2\]
\[ \Rightarrow \frac{\sin\left( x + 15^\circ + x - 15^\circ \right)}{\sin\left( x + 15^\circ- x + 15^\circ \right)} = 2\]

\[\Rightarrow \frac{\sin2x}{\sin30^\circ} = 2\]

\[ \Rightarrow \sin2x = 2 \times \frac{1}{2} = 1 \left( \sin30^\circ = \frac{1}{2} \right)\]

\[ \Rightarrow \sin2x = \sin90^\circ\]

\[ \Rightarrow 2x = 90^\circ \left( 0 < x < 90^\circ \right)\]

\[ \Rightarrow x = 45^\circ\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.2 | Q 11 | पृष्ठ २६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the general solution of the equation cos 3x + cos x – cos 2x = 0


If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


If tan θ + sec θ =ex, then cos θ equals


Find the general solution of the following equation:

\[\cos 3x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Find the general solution of the following equation:

\[\tan px = \cot qx\]

 


Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


If \[4 \sin^2 x = 1\], then the values of x are

 


If \[\cot x - \tan x = \sec x\], then, x is equal to

 


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


The minimum value of 3cosx + 4sinx + 8 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×