Advertisements
Advertisements
प्रश्न
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
उत्तर
LHS = \[6 T_{10} - 15 T_8 + 10 T_6 - 1\]
\[=6\left( \sin^{10} x + \cos^{10} x \right) - 15\left( \sin^8 x + \cos^8 x \right) + 10\left( \sin^6 x + \cos^6 x \right) - 1\]
`=6(sin^2x+cos^2x)(sin^8x+cos^8x-sin^2xcos^2x)-15(sin^8x+cos^8x)+10(sin^6x+cos^6x)-1`
`=6(sin^8x+cos^8x-sin^2xcos^2x)-15(sin^8x+cos^8x)+10(sin^6x+cos^6x)-1`
`=6sin^8x+6cos^8x-6sin^2xcos^2x-15sin^8x-15cos^8x+10(sin^6x+cos^6x)-1`
`=-6sin^2xcos^2x-9sin^8x-9cos^8x+10(sin^6x+cos^6x)-1`
`=-6sin^2xcos^2x-9(sin^8x+cos^8x)+10(sin^6x+cos^6x)-1`
`=-6sin^2xcos^2x-9(sin^2x+cos^2x)(sin^6x+cos^6x-sin^2xcos^2x)+10(sin^6x+cos^6x)-1`
`=-6sin^2xcos^2x-9(sin^6x+cos^6x-sin^2xcos^2x)+10(sin^6x+cos^6x)-1`
`=-6sin^2xcos^2x-9sin^6x-9cos^6x+9sin^2xcos^2x+10sin^6x+10cos^6x-1`
`=3sin^2xcos^2x+sin^6x+cos^6x-1`
`=3sin^2xcos^2x+(sin^2x+cos^2x)(sin^4x+cos^4x-sin^2xcos^2x)-1`
`=3sin^2xcos^2x+sin^4x+cos^4x-sin^2xcos^2x-1`
`=(sin^2x)^2+2sin^2xcos^2x+(cos^2x)^2-1`
`=(sin^2x+cos^2x)^2-1`
=12-1
=0
=RHS
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
Prove that
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
Prove that:
sin6 A + cos6 A + 3 sin2 A cos2 A =
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
3tanx + cot x = 5 cosec x
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.