Advertisements
Advertisements
प्रश्न
Prove that
उत्तर
LHS =\[ \frac{\tan \left( 90^\circ - x \right) \sec \left( 180^\circ - x \right) \sin \left( - x \right)}{\sin\left( 180^\circ + x \right)\cot \left( 360^\circ - x \right)cosec \left( 90^\circ - x \right)} \]
\[ = \frac{\tan \left( 90^\circ \times 1 - x \right) \sec \left( 90^\circ \times 2 - x \right)\sin \left( - x \right)}{\sin \left( 90^\circ \times 2 + x \right) \cot \left( 90^\circ \times 4 - x \right)cosec \left( 90^\circ \times 1 - x \right)}\]
\[ = \frac{\cot x\left[ - \sec x \right]\left[ - \sin x \right]}{\left[ - \sin x \right]\left[ - \cot x \right] \sec x}\]
\[ = \frac{\cot x \sec x \sin x}{\sin x \cot x \sec x}\]
\[ = \frac{\frac{\cos x}{\sin x} \times \frac{1}{\cos x} \times \sin x}{\sin x \times \frac{\cos x}{\sin x} \times \frac{1}{\cos x}}\]
\[ = \frac{1}{1}\]
\[ = 1\]
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
Find the principal and general solutions of the equation sec x = 2
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that
Prove that
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
3tanx + cot x = 5 cosec x
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
If \[4 \sin^2 x = 1\], then the values of x are
If \[\cot x - \tan x = \sec x\], then, x is equal to
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.