मराठी

Find the Principal and General Solutions of the Equation `Tan X = Sqrt3` - Mathematics

Advertisements
Advertisements

प्रश्न

Find the principal and general solutions of the equation `tan x = sqrt3`

उत्तर

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Exercise 3.4 [पृष्ठ ७८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 3 Trigonometric Functions
Exercise 3.4 | Q 1 | पृष्ठ ७८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution for each of the following equations sec2 2x = 1– tan 2x


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Find the general solution of the following equation:

\[\tan px = \cot qx\]

 


Find the general solution of the following equation:

\[\sin x = \tan x\]

Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
3tanx + cot x = 5 cosec x


Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].


If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


If \[4 \sin^2 x = 1\], then the values of x are

 


A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


Solve the equation sin θ + sin 3θ + sin 5θ = 0


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×