Advertisements
Advertisements
प्रश्न
Find the general solution of the following equation:
उत्तर
We have:
\[\Rightarrow \tan2x = \frac{1}{\tan x}\]
\[ \Rightarrow \tan2x = \cot x\]
\[ \Rightarrow \tan2x = \tan \left( \frac{\pi}{2} - x \right)\]
\[ \Rightarrow 2x = n\pi + \left( \frac{\pi}{2} - x \right), n \in Z\]
\[ \Rightarrow 3x = n\pi + \frac{\pi}{2}, n \in Z\]
\[ \Rightarrow x = \frac{n\pi}{3} + \frac{\pi}{6}, n \in Z\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `cot x = -sqrt3`
If \[\tan x = \frac{a}{b},\] show that
Prove that:
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
In a ∆ABC, prove that:
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Prove that:
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If tan θ + sec θ =ex, then cos θ equals
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
General solution of \[\tan 5 x = \cot 2 x\] is
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x