Advertisements
Advertisements
प्रश्न
General solution of \[\tan 5 x = \cot 2 x\] is
पर्याय
\[\frac{n \pi}{7} + \frac{\pi}{2}, n \in Z\]
- \[x = \frac{n \pi}{7} + \frac{\pi}{3}, n \in Z\]
- \[x = \frac{n \pi}{7} + \frac{\pi}{14}, n \in Z\]
- \[x = \frac{n \pi}{7} - \frac{\pi}{14}, n \in Z\]
उत्तर
Given:
\[\tan5x = \cot2x\]
\[ \Rightarrow \tan5x = \tan \left( \frac{\pi}{2} - 2x \right)\]
\[ \Rightarrow 5x = n\pi + \frac{\pi}{2} - 2x\]
\[ \Rightarrow 7x = n\pi + \frac{\pi}{2}\]
\[ \Rightarrow x = \frac{n\pi}{7} + \frac{\pi}{14} , n \in Z\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[\tan x = \frac{a}{b},\] show that
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Write the general solutions of tan2 2x = 1.
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
Write the solution set of the equation
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.