मराठी

General Solution of Tan 5 X = Cot 2 X is - Mathematics

Advertisements
Advertisements

प्रश्न

General solution of \[\tan 5 x = \cot 2 x\] is

पर्याय

  • \[\frac{n \pi}{7} + \frac{\pi}{2}, n \in Z\]

  • \[x = \frac{n \pi}{7} + \frac{\pi}{3}, n \in Z\]

     

  • \[x = \frac{n \pi}{7} + \frac{\pi}{14}, n \in Z\]

     

  • \[x = \frac{n \pi}{7} - \frac{\pi}{14}, n \in Z\]

     

MCQ
बेरीज

उत्तर

\[x = \frac{n \pi}{7} - \frac{\pi}{14}, n \in Z\]
Given:
\[\tan5x = \cot2x\]
\[ \Rightarrow \tan5x = \tan \left( \frac{\pi}{2} - 2x \right)\]
\[ \Rightarrow 5x = n\pi + \frac{\pi}{2} - 2x\]
\[ \Rightarrow 7x = n\pi + \frac{\pi}{2}\]
\[ \Rightarrow x = \frac{n\pi}{7} + \frac{\pi}{14} , n \in Z\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.3 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.3 | Q 18 | पृष्ठ २८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution for each of the following equations sec2 2x = 1– tan 2x


Find the general solution of the equation  sin x + sin 3x + sin 5x = 0


If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is

 

Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:

\[\tan x + \tan 2x + \tan 3x = 0\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Write the general solutions of tan2 2x = 1.

 

Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 


The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×