मराठी

If cos x + √ 3 sin x = 2 , then x = - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 

पर्याय

  • \[\pi/3\]

     

  • \[2\pi/3\]

     

  • \[4\pi/6\]

     

  • \[5\pi/12\]

     

MCQ
बेरीज

उत्तर

`pi/3`
Given:
\[\cos x + \sqrt{3}\sin x = 2\] ...(i)
This equation is of the form \[a \cos x + b \sin x = c\], where

\[a = 1, b = \sqrt{3}\] and c = 2
Let: \[a = r \cos \alpha\text{ and }b = \sin \alpha\]
Now,
\[1 = r \cos \alpha , \sqrt{3} = r \sin \alpha\]
\[\Rightarrow r = \sqrt{a^2 + b^2} = \sqrt{1 + 3} = \sqrt{4} = 2\]
And,
\[\tan\alpha = \frac{b}{a} \]
\[ \Rightarrow \tan\alpha = \frac{\sqrt{3}}{1} \]
\[ \Rightarrow \tan\alpha = \sqrt{3}\]
\[\Rightarrow \alpha = \frac{\pi}{3}\]
On putting \[a = 1 = r \cos \alpha\text{ and }b = \sqrt{3} = r \sin \alpha\] in equation (i), we get:

\[r \cos x \cos \alpha + r \sin x \sin \alpha = 2\]

\[ \Rightarrow r \cos ( x - \alpha) = 2\]

\[ \Rightarrow 2 \cos \left( x - \frac{\pi}{3} \right) = 2\]

\[ \Rightarrow \cos \left( x - \frac{\pi}{3} \right) = 1\]

\[ \Rightarrow \cos \left( x - \frac{\pi}{3} \right) = \cos 0\]

\[ \Rightarrow x - \frac{\pi}{3} = 2n\pi \pm 0\]

\[ \Rightarrow x = 2n\pi \pm \frac{\pi}{3}\]

For n = 0, x = `pi/3`

`therefore x= pi/3`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.3 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.3 | Q 2 | पृष्ठ २६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the general solution of cosec x = –2


Find the general solution of the equation sin 2x + cos x = 0


If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\sin 3x - \sin x = 4 \cos^2 x - 2\]

Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is


Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`


Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×