मराठी

Solve the Following Equation: Cos X + Cos 3 X − Cos 2 X = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]
बेरीज

उत्तर

\[\cos x + \cos 3x - \cos 2x = 0\]
\[\Rightarrow 2 \cos \left( \frac{4x}{2} \right) \cos \left( \frac{2x}{2} \right) - \cos2x = 0\]
\[ \Rightarrow 2 \cos2x \cos x - \cos2x = 0\]
\[ \Rightarrow \cos2x ( 2 \cos x - 1) = 0\]

\[\Rightarrow \cos2x = 0\] or

\[2 \cos x - 1 = 0\]
\[\Rightarrow \cos2x = \cos \frac{\pi}{2}\] or
\[\cos x = \frac{1}{2} \Rightarrow \cos x = \cos\frac{\pi}{3}\]
\[\Rightarrow 2x = (2n + 1)\frac{\pi}{2}, n \in Z\] or
\[x = 2m\pi \pm \frac{\pi}{3}, m \in Z\]
\[\Rightarrow x = (2n + 1)\frac{\pi}{4}, n \in Z\] or
\[x = 2m\pi \pm \frac{\pi}{3}, m \in Z\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.1 | Q 4.2 | पृष्ठ २२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x


If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

Prove that:
\[\sin\frac{13\pi}{3}\sin\frac{8\pi}{3} + \cos\frac{2\pi}{3}\sin\frac{5\pi}{6} = \frac{1}{2}\]


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


Which of the following is incorrect?


Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

If \[\cot x - \tan x = \sec x\], then, x is equal to

 


The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ *  tan 130^circ)` =


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×