मराठी

Solve the Following Equation: Sin X + Sin 2 X + Sin 3 X + Sin 4 X = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]
बेरीज

उत्तर

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

\[\Rightarrow \sin3x + \sin x + \sin4x + \sin2x = 0\]
\[ \Rightarrow 2 \sin \left( \frac{4x}{2} \right) \cos \left( \frac{2x}{2} \right) + 2 \sin \left( \frac{6x}{2} \right) \cos \left( \frac{2x}{2} \right) = 0\]
\[ \Rightarrow 2 \sin2x \cos x + 2 \sin3x \cos x = 0\]
\[ \Rightarrow 2 \cos x ( \sin2x + \sin3x ) = 0\]
\[ \Rightarrow 2 \cos x\left( 2 \sin \left( \frac{5x}{2} \right) \cos \left( \frac{x}{2} \right) \right) = 0\]
\[ \Rightarrow 4 \cos x \sin \left( \frac{5x}{2} \right) \cos \left( \frac{x}{2} \right) = 0\]

\[\Rightarrow \cos x = 0 , \sin \left( \frac{5x}{2} \right) = 0\]
\[\cos \left( \frac{x}{2} \right) = 0\]
\[\Rightarrow \cos x = \cos \frac{\pi}{2}, \sin \left( \frac{5x}{2} \right) = \sin 0\] or
\[\cos \left( \frac{x}{2} \right) = \cos \frac{\pi}{2}\]
\[\Rightarrow x = (2n + 1) \frac{\pi}{2}, n \in Z or \frac{5x}{2} = n\pi , n \in Z\] or,
\[\frac{x}{2} = (2n + 1) \frac{\pi}{2} , n \in Z\]
\[\Rightarrow x = (2n + 1) \frac{\pi}{2} , n \in Z\] or
\[x = \frac{2n\pi}{5} , n \in Z\] or
\[x = (2n + 1)\pi, n \in Z\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.1 | Q 4.7 | पृष्ठ २२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution of the equation cos 3x + cos x – cos 2x = 0


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Solve the equation sin θ + sin 3θ + sin 5θ = 0


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×