Advertisements
Advertisements
प्रश्न
Solve the following equation:
उत्तर
\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]
\[\Rightarrow \sin3x + \sin x + \sin4x + \sin2x = 0\]
\[ \Rightarrow 2 \sin \left( \frac{4x}{2} \right) \cos \left( \frac{2x}{2} \right) + 2 \sin \left( \frac{6x}{2} \right) \cos \left( \frac{2x}{2} \right) = 0\]
\[ \Rightarrow 2 \sin2x \cos x + 2 \sin3x \cos x = 0\]
\[ \Rightarrow 2 \cos x ( \sin2x + \sin3x ) = 0\]
\[ \Rightarrow 2 \cos x\left( 2 \sin \left( \frac{5x}{2} \right) \cos \left( \frac{x}{2} \right) \right) = 0\]
\[ \Rightarrow 4 \cos x \sin \left( \frac{5x}{2} \right) \cos \left( \frac{x}{2} \right) = 0\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
The smallest value of x satisfying the equation
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Solve the equation sin θ + sin 3θ + sin 5θ = 0
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0