Advertisements
Advertisements
प्रश्न
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
उत्तर
LHS = \[\tan225^\circ\cot405^\circ + \tan765^\circ\cot675^\circ\]
\[ = \tan \left( 90^\circ \times 2 + 45^\circ \right)\cot \left( 90^\circ \times 4 + 45^\circ \right) + \tan \left( 90^\circ \times 8 + 45^\circ \right) \cot \left( 90^\circ \times 7 + 45^\circ \right)\]
\[ = \tan \left( 45^\circ \right) \cot \left( 45^\circ \right) + \tan \left( 45^\circ \right)\left[ - \tan \left( 45^\circ \right) \right]\]
\[ = 1 \times 1 + 1 \times \left( - 1 \right)\]
\[ = 1 - 1\]
\[ = 0\]
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that:
Prove that
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
Prove that:
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the number of points of intersection of the curves
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
The smallest positive angle which satisfies the equation
If \[4 \sin^2 x = 1\], then the values of x are
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
General solution of \[\tan 5 x = \cot 2 x\] is
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.