मराठी

Prove That: 3 Sin π 6 Sec π 3 − 4 Sin 5 π 6 Cot π 4 = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 

उत्तर

 LHS = \[3\sin\frac{\pi}{6}sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}cot\frac{\pi}{4}\]
\[ = 3\sin\left( \frac{180^\circ}{6} \right)\sec\left( \frac{180^\circ}{3} \right) - 4\sin\left( \frac{5 \times 180^\circ}{6} \right)\cot\left( \frac{180^\circ}{4} \right)\]
\[ = 3\sin\left( 30^\circ \right)\sec\left( 60^\circ \right) - 4\sin\left( 150^\circ \right)\cot\left( 45^\circ \right)\]
\[ = 3\sin\left( 30^\circ \right)\sec\left( 60^\circ \right) - 4\sin\left( 90^\circ \times 1 + 60^\circ \right)\cot\left( 45^\circ \right)\]
\[ = 3\sin \left( 30^\circ \right)\sec \left( 60^\circ \right) - 4\cos \left( 60^\circ \right)\cot \left( 45^\circ \right)\]
\[ = 3 \times \frac{1}{2} \times 2 - 4 \times \frac{1}{2} \times 1\]
\[ = 3 - 2\]
\[ = 1\]
 = RHS
Hence proved .

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Trigonometric Functions - Exercise 5.3 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 5 Trigonometric Functions
Exercise 5.3 | Q 2.7 | पृष्ठ ३९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the general solution of cosec x = –2


If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to


If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is


If tan θ + sec θ =ex, then cos θ equals


Which of the following is correct?


Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\tan px = \cot qx\]

 


Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3 = 0\]

Solve the following equation:

\[\sin x + \cos x = 1\]

Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


If \[4 \sin^2 x = 1\], then the values of x are

 


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×