Advertisements
Advertisements
प्रश्न
Write the set of values of a for which the equation
उत्तर
Given:
\[\sqrt{3} \sin x - \cos x = a\]
\[ \Rightarrow \frac{\sqrt{3} \sin x - \cos x}{2} = \frac{a}{2}\]
\[ \Rightarrow \frac{\sqrt{3}}{2} \sin x - \frac{1}{2} \cos x = \frac{a}{2}\]
\[ \Rightarrow \cos 30^\circ \sin x - \sin 30^\circ \cos x = \frac{a}{2}\]
\[ \Rightarrow \sin ( x - 30^\circ) = \frac{a}{2}\]
\[ \Rightarrow x - 30^\circ = \sin^{- 1} \left( \frac{a}{2} \right)\]
\[ \Rightarrow x = \sin^{- 1} \left( \frac{a}{2} \right) + 30^\circ\]
If \[a = 2\] or \[a = 2\] , then the equation will possess a solution.
For no solution,
\[a \in ( - \infty , - 2) \cup (2, \infty )\].
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation cos 4 x = cos 2 x
Find the general solution of the equation sin 2x + cos x = 0
If \[\tan x = \frac{a}{b},\] show that
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
Prove that:
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
Which of the following is incorrect?
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
Write the general solutions of tan2 2x = 1.
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
Solve the equation sin θ + sin 3θ + sin 5θ = 0