मराठी

Which of the following is incorrect? - Mathematics

Advertisements
Advertisements

प्रश्न

Which of the following is incorrect?

पर्याय

  • \[\sin x = - \frac{1}{5}\]

     

  • cos x = 1

  • \[\sec x = \frac{1}{2}\]

     

  • tan x = 20

MCQ

उत्तर

`bb(sec x = 1/2)`

Explanation:

\[\sin x = - \frac{1}{5}\] is correct as \[- 1 \leq \sin x \leq 1\]

cos x = 1 is correct as cos x = 1 is correct as

\[\sec x = \frac{1}{2}\] is not correct as \[\sec x \in ( - \infty , - 1] \cup [1, \infty )\]
tan x = 20 is correct as tan x can take any real value.
Hence, the correct answer is option \[\sec x = \frac{1}{2}\].
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Trigonometric Functions - Exercise 5.5 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 5 Trigonometric Functions
Exercise 5.5 | Q 25 | पृष्ठ ४३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the general solution of the equation  sin x + sin 3x + sin 5x = 0


If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and r cos θ, then x2 + y2 + z2 is independent of


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Find the general solution of the following equation:

\[\sin 2x + \cos x = 0\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.


If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

If \[4 \sin^2 x = 1\], then the values of x are

 


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×