Advertisements
Advertisements
प्रश्न
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
उत्तर
LHS:\[\frac{T_3 - T_5}{T_1} = \frac{\left( \sin^3 x + \cos^3 x \right) - \left( \sin^5 x + \cos^5 x \right)}{\sin x + \cos x}\]
\[ = \frac{\sin^3 x - \sin^5 x + \cos^3 x - \cos^5 x}{\sin x + \cos x}\]
\[ = \frac{\sin^3 x\left( 1 - \sin^2 x \right) + \cos^3 x\left( 1 - \cos^2 x \right)}{\sin x + \cos x}\]
\[ = \frac{\sin^3 x . \cos^2 x + c {os}^3 x . \sin^2 x}{\sin x + \cos x}\]
\[ = \frac{\sin^2 x . \cos^2 x\left( \sin x + cos x \right)}{\sin x + \cos x}\]
\[ = \sin^2 x . \cos^2 x\]
RHS: \[\frac{T_5 - T_7}{T_3}\]
\[ = \frac{\left( \sin^5 x + \cos^5 x \right) - \left( \sin^7 x + \cos^7 x \right)}{\sin^3 x + \cos^3 x}\]
\[ = \frac{\sin^5 x - si n^7 x + \cos^5 x - \cos^7 x}{\sin^3 x + \cos^3 x}\]
\[ = \frac{\sin^5 x\left( 1 - \sin^2 x \right) + \cos^5 x\left( 1 - \cos^2 x \right)}{\sin^3 x + \cos^3 x}\]
\[ = \frac{\sin^5 x \cos^2 x + \cos^5 x \sin^2 x}{\sin^3 x + \cos^3 x}\]
\[ = \sin^2 x . \cos^2 x\]
LHS = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
Prove that
Prove that
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to
sin6 A + cos6 A + 3 sin2 A cos2 A =
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
The smallest value of x satisfying the equation
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`