Advertisements
Advertisements
प्रश्न
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
पर्याय
7
5
4
2
उत्तर
2
Given equation:
\[\tan x + \tan2x + \tan3x = \tan x \tan2x \tan3x\]
\[ \Rightarrow \tan x + \tan2x = - \tan3x + \tan x \tan2x \tan3x\]
\[ \Rightarrow \tan x + \tan2x = - \tan3x (1 - \tan x \tan2x)\]
\[ \Rightarrow \frac{\tan x + \tan2x}{1 - \tan x \tan 2x} = - \tan3x\]
\[ \Rightarrow \tan ( x + 2x) = - \tan3x\]
\[ \Rightarrow \tan3x = - \tan3x\]
\[ \Rightarrow 2 \tan3x = 0\]
\[ \Rightarrow \tan3x = 0\]
\[ \Rightarrow 3x = n\pi\]
\[ \Rightarrow x = \frac{n\pi}{3}\]
Now,
\[x = \frac{\pi}{3} , n = 1\]
\[x = \frac{2\pi}{3} , n = 2\]
\[x = \frac{3\pi}{3} = 180^\circ\], which is not possible, as it is not in the interval \[(0, 2\pi)\].
Hence, the number of solutions of the given equation is 2.
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation sec x = 2
Find the general solution of cosec x = –2
Find the general solution of the equation cos 4 x = cos 2 x
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
Find the general solution of the equation sin 2x + cos x = 0
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that:
Prove that
Prove that:
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Write the set of values of a for which the equation
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
The smallest value of x satisfying the equation
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The smallest positive angle which satisfies the equation
If \[\cot x - \tan x = \sec x\], then, x is equal to
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
Solve the equation sin θ + sin 3θ + sin 5θ = 0
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0