मराठी

In (0, π), the Number of Solutions of the Equation ​ Tan X + Tan 2 X + Tan 3 X = Tan X Tan 2 X Tan 3 X is - Mathematics

Advertisements
Advertisements

प्रश्न

In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 

पर्याय

  • 7

  • 5

  • 4

  • 2

MCQ
बेरीज

उत्तर

2
Given equation:
\[\tan x + \tan2x + \tan3x = \tan x \tan2x \tan3x\]
\[ \Rightarrow \tan x + \tan2x = - \tan3x + \tan x \tan2x \tan3x\]
\[ \Rightarrow \tan x + \tan2x = - \tan3x (1 - \tan x \tan2x)\]
\[ \Rightarrow \frac{\tan x + \tan2x}{1 - \tan x \tan 2x} = - \tan3x\]
\[ \Rightarrow \tan ( x + 2x) = - \tan3x\]
\[ \Rightarrow \tan3x = - \tan3x\]
\[ \Rightarrow 2 \tan3x = 0\]
\[ \Rightarrow \tan3x = 0\]
\[ \Rightarrow 3x = n\pi\]
\[ \Rightarrow x = \frac{n\pi}{3}\]
Now,
\[x = \frac{\pi}{3} , n = 1\]
\[x = \frac{2\pi}{3} , n = 2\]
\[x = \frac{3\pi}{3} = 180^\circ\], which is not possible, as it is not in the interval \[(0, 2\pi)\].
Hence, the number of solutions of the given equation is 2.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.3 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.3 | Q 13 | पृष्ठ २७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation sec x = 2


Find the general solution of cosec x = –2


Find the general solution of the equation cos 4 x = cos 2 x


Find the general solution of the equation cos 3x + cos x – cos 2x = 0


Find the general solution of the equation sin 2x + cos x = 0


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


Prove that:

\[\sin\frac{10\pi}{3}\cos\frac{13\pi}{6} + \cos\frac{8\pi}{3}\sin\frac{5\pi}{6} = - 1\]

\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

If \[\cot x - \tan x = \sec x\], then, x is equal to

 


The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


Solve the equation sin θ + sin 3θ + sin 5θ = 0


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×