Advertisements
Advertisements
प्रश्न
Solve the equation sin θ + sin 3θ + sin 5θ = 0
उत्तर
We have sin θ + sin 3θ + sin 5θ = 0
or (sin θ + sin 5θ) + sin 3θ = 0
or 2 sin 3θ cos 2θ + sin 3θ = 0
or sin 3θ (2 cos 2θ + 1) = 0
or sin 3θ = 0 or cos 2θ = `- 1/2`
When sin 3θ = 0, then 3θ = nπ or θ = `("n"pi)/3`
When cos 2θ = `-1/2`
= `cos (2pi)/3`
Then 2θ = `2"n"pi +- (2pi)/3` or θ = `"n"pi +- pi/3`
Which gives θ = `(3"n" + 1) pi/3` or θ = `(3"n" - 1) pi/3`
All these values of θ are contained in θ = `("n"pi)/3` , n ∈ Z.
Hence, the required solution set is given by `{θ : θ = ("n"pi)/3, "n" ∈ "Z"}`
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation sin 2x + cos x = 0
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[\tan x = \frac{a}{b},\] show that
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
Prove that:
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
In a ∆ABC, prove that:
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If tan θ + sec θ =ex, then cos θ equals
If sec x + tan x = k, cos x =
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
The minimum value of 3cosx + 4sinx + 8 is ______.