Advertisements
Advertisements
प्रश्न
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
पर्याय
0
1
- \[\frac{1}{2}\]
not defined
उत्तर
We know that,
\[\tan\left( 90^\circ - \theta \right) = \cot\theta\]
So,
\[\tan89^\circ = \tan\left( 90^\circ - 1^\circ \right) = \cot1^\circ\]
\[\tan88^\circ = \tan\left( 90^\circ - 2^\circ \right) = \cot2^\circ\]
\[\tan87^\circ = \tan\left( 90^\circ - 3^\circ \right) = \cot3^\circ\]
. . . .
. . . .
\[\tan46^\circ = \tan\left( 90^\circ - 44^\circ \right) = \cot44^\circ\]
\[\therefore \tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\]
\[ = \tan1^\circ \tan2^\circ \tan3^\circ . . . \tan44^\circ \tan45^\circ \tan46^\circ . . . \tan87^\circ \tan88^\circ \tan89^\circ\]
\[ = \tan1^\circ \tan2^\circ \tan3^\circ . . . \tan44^\circ \tan45^\circ \cot44^\circ. . . \cot3^\circ \cot2^\circ \cot1^\circ\]
\[ = \left( \tan1^\circ\cot1^\circ \right)\left( \tan2^\circ\cot2^\circ \right) \left( \tan3^\circ\cot3^\circ \right) . . . \left( \tan44^\circ\cot44^\circ \right)\tan45^\circ\]
\[ = 1 \left( \tan45^\circ = 1\text{ and }\tan\theta\cot\theta = 1 \right)\]
Hence, the correct answer is option 1.
APPEARS IN
संबंधित प्रश्न
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that:
If sec \[x = x + \frac{1}{4x}\], then sec x + tan x =
sin6 A + cos6 A + 3 sin2 A cos2 A =
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Which of the following is incorrect?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Solve the following equation:
3tanx + cot x = 5 cosec x
Write the solution set of the equation
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The smallest positive angle which satisfies the equation
In (0, π), the number of solutions of the equation \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x