मराठी

The value of tan 1 ∘ tan 2 ∘ tan 3 ∘ . . . tan 89 ∘ is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

पर्याय

  • 0

  • 1

  • \[\frac{1}{2}\]

     

  • not defined  

MCQ

उत्तर

We know that,
\[\tan\left( 90^\circ - \theta \right) = \cot\theta\]
So,

\[\tan89^\circ = \tan\left( 90^\circ - 1^\circ \right) = \cot1^\circ\]
\[\tan88^\circ = \tan\left( 90^\circ - 2^\circ \right) = \cot2^\circ\]
\[\tan87^\circ = \tan\left( 90^\circ - 3^\circ \right) = \cot3^\circ\]
 . . . .
 . . . . 
\[\tan46^\circ = \tan\left( 90^\circ - 44^\circ \right) = \cot44^\circ\]

\[\therefore \tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\]

\[ = \tan1^\circ \tan2^\circ \tan3^\circ . . . \tan44^\circ \tan45^\circ \tan46^\circ . . . \tan87^\circ \tan88^\circ \tan89^\circ\]

\[ = \tan1^\circ \tan2^\circ \tan3^\circ . . . \tan44^\circ \tan45^\circ \cot44^\circ. . . \cot3^\circ \cot2^\circ \cot1^\circ\]

\[ = \left( \tan1^\circ\cot1^\circ \right)\left( \tan2^\circ\cot2^\circ \right) \left( \tan3^\circ\cot3^\circ \right) . . . \left( \tan44^\circ\cot44^\circ \right)\tan45^\circ\]

\[ = 1 \left( \tan45^\circ = 1\text{ and }\tan\theta\cot\theta = 1 \right)\]

Hence, the correct answer is option 1.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Trigonometric Functions - Exercise 5.5 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 5 Trigonometric Functions
Exercise 5.5 | Q 27 | पृष्ठ ४३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If sec \[x = x + \frac{1}{4x}\], then sec x + tan x = 

 

sin6 A + cos6 A + 3 sin2 A cos2 A =


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


Which of the following is incorrect?


Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Find the general solution of the following equation:

\[\sin x = \tan x\]

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3 = 0\]

Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Solve the following equation:
3tanx + cot x = 5 cosec x


Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval


The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

In (0, π), the number of solutions of the equation ​ \[\tan x + \tan 2x + \tan 3x = \tan x \tan 2x \tan 3x\] is 


If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

cos 2x = 1 − 3 sin x


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×