Advertisements
Advertisements
प्रश्न
Find the general solution of the following equation:
उत्तर
We have:
\[\tan3x = \cot x\]
\[\Rightarrow \tan3x = \tan \left( \frac{\pi}{2} - x \right)\]
\[ \Rightarrow 3x = n\pi + \left( \frac{\pi}{2} - x \right), n \in Z\]
\[ \Rightarrow 4x = n\pi + \frac{\pi}{2}, n \in Z\]
\[ \Rightarrow x = \frac{n\pi}{4} + \frac{\pi}{8}, n \in Z\]
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation cos 4 x = cos 2 x
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
Prove that:
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
Write the number of points of intersection of the curves
The smallest value of x satisfying the equation
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`