Advertisements
Advertisements
Question
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Options
0
1
- \[\frac{1}{2}\]
not defined
Solution
We know that,
\[\tan\left( 90^\circ - \theta \right) = \cot\theta\]
So,
\[\tan89^\circ = \tan\left( 90^\circ - 1^\circ \right) = \cot1^\circ\]
\[\tan88^\circ = \tan\left( 90^\circ - 2^\circ \right) = \cot2^\circ\]
\[\tan87^\circ = \tan\left( 90^\circ - 3^\circ \right) = \cot3^\circ\]
. . . .
. . . .
\[\tan46^\circ = \tan\left( 90^\circ - 44^\circ \right) = \cot44^\circ\]
\[\therefore \tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\]
\[ = \tan1^\circ \tan2^\circ \tan3^\circ . . . \tan44^\circ \tan45^\circ \tan46^\circ . . . \tan87^\circ \tan88^\circ \tan89^\circ\]
\[ = \tan1^\circ \tan2^\circ \tan3^\circ . . . \tan44^\circ \tan45^\circ \cot44^\circ. . . \cot3^\circ \cot2^\circ \cot1^\circ\]
\[ = \left( \tan1^\circ\cot1^\circ \right)\left( \tan2^\circ\cot2^\circ \right) \left( \tan3^\circ\cot3^\circ \right) . . . \left( \tan44^\circ\cot44^\circ \right)\tan45^\circ\]
\[ = 1 \left( \tan45^\circ = 1\text{ and }\tan\theta\cot\theta = 1 \right)\]
Hence, the correct answer is option 1.
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation sec x = 2
Find the general solution of the equation sin 2x + cos x = 0
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
If tan θ + sec θ =ex, then cos θ equals
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
`cosec x = 1 + cot x`
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
The smallest positive angle which satisfies the equation
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
sin4x = sin2x
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
Solve the equation sin θ + sin 3θ + sin 5θ = 0
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`