मराठी

Solve the Following Equation: Cosx + Sin X = Cos 2x + Sin 2x - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 

बेरीज

उत्तर

\[\cos x + \sin x = \cos2x + \sin2x\]
\[ \Rightarrow \cos2x - \cos x + \sin2x - \sin x = 0\]
\[ \Rightarrow - 2\sin\frac{3x}{2}\sin\frac{x}{2} + 2\cos\frac{3x}{2}\sin\frac{x}{2} = 0\]
\[ \Rightarrow 2\sin\frac{x}{2}\left( \cos\frac{3x}{2} - \sin\frac{3x}{2} \right) = 0\]
\[ \Rightarrow 2 \sin\frac{x}{2} = 0\text{ or }\cos\frac{3x}{2} - \sin\frac{3x}{2} = 0\]
\[ \Rightarrow \sin\frac{x}{2} = 0\text{ or }\cos\frac{3x}{2} = \sin\frac{3x}{2}\]
\[ \Rightarrow \frac{x}{2} = n\pi\text{ or }\tan\frac{3x}{2} = 1\]
\[ \Rightarrow x = 2n\pi\text{ or }\tan\frac{3x}{2} = \tan\frac{\pi}{4}\]
\[ \Rightarrow x = 2n\pi\text{ or }\frac{3x}{2} = n\pi + \frac{\pi}{4}\]
\[ \Rightarrow x = 2n\pi\text{ or }3x = 2n\pi + \frac{\pi}{2}\]
\[ \Rightarrow x = 2n\pi\text{ or }x = \frac{2n\pi}{3} + \frac{\pi}{6}, n \in \mathbb{Z}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric equations - Exercise 11.1 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 11 Trigonometric equations
Exercise 11.1 | Q 7.7 | पृष्ठ २२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the principal and general solutions of the equation sec x = 2


Find the general solution of the equation cos 3x + cos x – cos 2x = 0


Find the general solution of the equation sin 2x + cos x = 0


Find the general solution for each of the following equations sec2 2x = 1– tan 2x


If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


sin6 A + cos6 A + 3 sin2 A cos2 A =


If sec x + tan x = k, cos x =


If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then


Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
3tanx + cot x = 5 cosec x


Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


The number of values of ​x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]


If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

cos 2x = 1 − 3 sin x


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×