English

Solve the Following Equation: Cosx + Sin X = Cos 2x + Sin 2x - Mathematics

Advertisements
Advertisements

Question

Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 

Sum

Solution

\[\cos x + \sin x = \cos2x + \sin2x\]
\[ \Rightarrow \cos2x - \cos x + \sin2x - \sin x = 0\]
\[ \Rightarrow - 2\sin\frac{3x}{2}\sin\frac{x}{2} + 2\cos\frac{3x}{2}\sin\frac{x}{2} = 0\]
\[ \Rightarrow 2\sin\frac{x}{2}\left( \cos\frac{3x}{2} - \sin\frac{3x}{2} \right) = 0\]
\[ \Rightarrow 2 \sin\frac{x}{2} = 0\text{ or }\cos\frac{3x}{2} - \sin\frac{3x}{2} = 0\]
\[ \Rightarrow \sin\frac{x}{2} = 0\text{ or }\cos\frac{3x}{2} = \sin\frac{3x}{2}\]
\[ \Rightarrow \frac{x}{2} = n\pi\text{ or }\tan\frac{3x}{2} = 1\]
\[ \Rightarrow x = 2n\pi\text{ or }\tan\frac{3x}{2} = \tan\frac{\pi}{4}\]
\[ \Rightarrow x = 2n\pi\text{ or }\frac{3x}{2} = n\pi + \frac{\pi}{4}\]
\[ \Rightarrow x = 2n\pi\text{ or }3x = 2n\pi + \frac{\pi}{2}\]
\[ \Rightarrow x = 2n\pi\text{ or }x = \frac{2n\pi}{3} + \frac{\pi}{6}, n \in \mathbb{Z}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.1 [Page 22]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.1 | Q 7.7 | Page 22

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to


sin6 A + cos6 A + 3 sin2 A cos2 A =


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

If sec x + tan x = k, cos x =


Which of the following is incorrect?


Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Solve the following equation:

\[3 \cos^2 x - 2\sqrt{3} \sin x \cos x - 3 \sin^2 x = 0\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Solve the following equation:
3tanx + cot x = 5 cosec x


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].


The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


General solution of \[\tan 5 x = \cot 2 x\] is


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

cos 2x = 1 − 3 sin x


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


The minimum value of 3cosx + 4sinx + 8 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×