Advertisements
Advertisements
Question
sin6 A + cos6 A + 3 sin2 A cos2 A =
Options
0
1
2
3
Solution
1
We have:
\[ \sin^6 A + \cos^6 A + 3\left( \sin^2 A \right) \left( \cos^2 A \right)\]
\[ = \left( \sin^2 A \right)^3 + \left( \cos^2 A \right)^3 + 3\left( \sin^2 A \right) \left( \cos^2 A \right) \times 1\]
\[ = \left( \sin^2 A \right)^3 + \left( \cos^2 A \right)^3 + 3\left( \sin^2 A \right) \left( \cos^2 A \right)\left( \sin^2 A + \cos^2 A \right)\]
\[ = \left( \sin^2 A + \cos^2 A \right)^3 \]
\[ = 1^3 = 1\]
APPEARS IN
RELATED QUESTIONS
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
Prove that:
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
Which of the following is incorrect?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
3tanx + cot x = 5 cosec x
Write the number of points of intersection of the curves
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
If \[4 \sin^2 x = 1\], then the values of x are
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
The minimum value of 3cosx + 4sinx + 8 is ______.