English

Sin6 a + Cos6 a + 3 Sin2 a Cos2 a = - Mathematics

Advertisements
Advertisements

Question

sin6 A + cos6 A + 3 sin2 A cos2 A =

Options

  • 0

  • 1

  • 2

  • 3

MCQ

Solution

1
We have: 
\[ \sin^6 A + \cos^6 A + 3\left( \sin^2 A \right) \left( \cos^2 A \right)\]
\[ = \left( \sin^2 A \right)^3 + \left( \cos^2 A \right)^3 + 3\left( \sin^2 A \right) \left( \cos^2 A \right) \times 1\]
\[ = \left( \sin^2 A \right)^3 + \left( \cos^2 A \right)^3 + 3\left( \sin^2 A \right) \left( \cos^2 A \right)\left( \sin^2 A + \cos^2 A \right)\]
\[ = \left( \sin^2 A + \cos^2 A \right)^3 \]
\[ = 1^3 = 1\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.5 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.5 | Q 11 | Page 42

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


Prove that:

\[\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}\]

 


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to


If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to


\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


Which of the following is incorrect?


Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\sin 3x + \cos 2x = 0\]

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\tan 3x + \tan x = 2\tan 2x\]

Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]


Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]


Solve the following equation:
3tanx + cot x = 5 cosec x


Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]

 and cos 2x are in A.P.


If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).


The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


If \[4 \sin^2 x = 1\], then the values of x are

 


If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 sin2x + 1 = 3 sin x


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
`tan theta + tan (theta + pi/3) + tan (theta + (2pi)/3) = sqrt(3)`


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


The minimum value of 3cosx + 4sinx + 8 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×