Advertisements
Advertisements
Question
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
Options
- \[x = \frac{\pi}{3}, \frac{4\pi}{3}\]
- \[x = \frac{2\pi}{3}, \frac{4\pi}{3}\]
- \[x = \frac{2\pi}{3}, \frac{7\pi}{6}\]
- \[\theta = \frac{2\pi}{3}, \frac{5\pi}{3}\]
Solution
Given equation:
\[\cos x = - \frac{1}{2}\]
\[ \Rightarrow \cos x = \cos \frac{2\pi}{3}\]
\[ \Rightarrow x = \frac{2\pi}{3}\]
Or,
\[\cos x = \cos \frac{4\pi}{3}\]
\[ \Rightarrow x = \frac{4\pi}{3}\]
APPEARS IN
RELATED QUESTIONS
If \[\tan x = \frac{a}{b},\] show that
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
sin x tan x – 1 = tan x – sin x
Solve the following equation:
3tanx + cot x = 5 cosec x
Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
The smallest value of x satisfying the equation
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
If \[4 \sin^2 x = 1\], then the values of x are
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
The minimum value of 3cosx + 4sinx + 8 is ______.