English

The Smallest Value of X Satisfying the Equation √ 3 ( Cot X + Tan X ) = 4 is - Mathematics

Advertisements
Advertisements

Question

The smallest value of x satisfying the equation

\[\sqrt{3} \left( \cot x + \tan x \right) = 4\] is 

Options

  • \[2\pi/3\]

     

  • `pi/3`

  • `pi/6`

  • `pi/12`

MCQ
Sum

Solution

\[\pi/6\]
Given:

\[\sqrt{3}(\cot x + \tan x) = 4\]

\[ \Rightarrow \sqrt{3} \left( \frac{\cos x}{\sin x} + \frac{\sin x}{\cos x} \right) = 4\]

\[ \Rightarrow \sqrt{3} ( \cos^2 x + \sin^2 x) = 4 \sin x \cos x\]

\[ \Rightarrow \sqrt{3} = 2 \sin2x [\sin2x = 2 \sin x \cos x]\]

\[ \Rightarrow \sin2x = \frac{\sqrt{3}}{2}\]

\[ \Rightarrow \sin2x = \sin \frac{\pi}{3}\]

\[ \Rightarrow 2x = n\pi + ( - 1 )^n \frac{\pi}{3}, n \in Z\]

\[ \Rightarrow x = \frac{n\pi}{2} + ( - 1 )^n \frac{\pi}{6}, n \in Z\]
To obtain the smallest value of x, we will put n = 0 in the above equation.
Thus, we have:
`x=pi/6`
Hence, the smallest value of x is 
`pi/6`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.3 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.3 | Q 1 | Page 26

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]


Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


In a ∆ABC, prove that:

\[\tan\frac{A + B}{2} = \cot\frac{C}{2}\]

In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to


Which of the following is incorrect?


Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]

Find the general solution of the following equation:

\[\sqrt{3} \sec x = 2\]

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Solve the following equation:

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\]

Solve the following equation:

\[\tan^2 x + \left( 1 - \sqrt{3} \right) \tan x - \sqrt{3} = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

The smallest positive angle which satisfies the equation ​

\[2 \sin^2 x + \sqrt{3} \cos x + 1 = 0\] is

If \[4 \sin^2 x = 1\], then the values of x are

 


General solution of \[\tan 5 x = \cot 2 x\] is


If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×