English

Number of solutions of the equation tanx + secx = 2 cosx lying in the interval [0, 2π] is ______. - Mathematics

Advertisements
Advertisements

Question

Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.

Options

  • 0

  • 1

  • 2

  • 3

MCQ
Fill in the Blanks

Solution

Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is 3.

Explanation:

tanx + sec = 2cosx

sin + 1 = cos2x = sinx + 1= 2 -  sin2x

2sin2x + sinx -1 = 0

(2sinx - 1) (sin + 1) = 0

but sinx = -1 

`x= (3pi)/2`

`sinx = 1/2 = sin(pi/6)`

therefore the general solution is,

`x = npi + (-1)^n.pi/6`

`x = ...pi/6, (5pi)/6`

therefore, the number of solutions in the given interval is 3. 

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise [Page 58]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 3 Trigonometric Functions
Exercise | Q 53 | Page 58

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the general solution of the equation cos 4 x = cos 2 x


Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


Prove that

\[\frac{\tan (90^\circ - x) \sec(180^\circ - x) \sin( - x)}{\sin(180^\circ + x) \cot(360^\circ - x) cosec(90^\circ - x)} = 1\]

 


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Find the general solution of the following equation:

\[\sin x = \tan x\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
\[\cot x + \tan x = 2\]

 


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]


Write the general solutions of tan2 2x = 1.

 

If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×