English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Find the principal solution and general solution of the following:tan θ = -13 - Mathematics

Advertisements
Advertisements

Question

Find the principal solution and general solution of the following:
tan θ = `- 1/sqrt(3)`

Sum

Solution

The principal value of tan θ lies in `(- pi/2, pi/2)`

Since tan θ = `- 1/sqrt(3) > 0`

The principal value of tan θ lies in the IV quadrant.

tan θ = `- 1/sqrt(3)`

= `- tan  pi/6`

tan θ = `tan ( - pi/6)`

θ = `- pi/6` is the principal solution.

The general solution of tan θ is

θ = `"n"pi - pi/6`, n ∈ Z

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometry - Exercise 3.8 [Page 133]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 3 Trigonometry
Exercise 3.8 | Q 1. (iii) | Page 133

RELATED QUESTIONS

Find the principal and general solutions of the equation sec x = 2


If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that

\[\frac{1 - \cos x + \sin x}{1 + \sin x}\] is also equal to a.

Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


In a ∆ABC, prove that:

\[\cos\left( \frac{A + B}{2} \right) = \sin\frac{C}{2}\]

 


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =

 

Find the general solution of the following equation:

\[\sin x = \frac{1}{2}\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0


Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is

 

If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is


The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×